دانلود مقاله ISI انگلیسی شماره 79782
ترجمه فارسی عنوان مقاله

برنامه نویسی پویای تقریبی برای تخصیص ظرفیت در صنعت خدمات

عنوان انگلیسی
Approximate dynamic programming for capacity allocation in the service industry
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79782 2012 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 218, Issue 1, 1 April 2012, Pages 239–250

ترجمه کلمات کلیدی
تخصیص ظرفیت؛ خدمات؛ عملیات مراقبت های بهداشتی - برنامه نویسی پویای تقریبی؛ یادگیری تقویت؛ فرایند تصمیم گیری نیمه مارکوف
کلمات کلیدی انگلیسی
Capacity allocation; Services; Health care operations; Approximate dynamic programming; Reinforcement learning; Semi-Markov decision process
پیش نمایش مقاله
پیش نمایش مقاله  برنامه نویسی پویای تقریبی برای تخصیص ظرفیت در صنعت خدمات

چکیده انگلیسی

We consider a problem where different classes of customers can book different types of service in advance and the service company has to respond immediately to the booking request confirming or rejecting it. The objective of the service company is to maximize profit made of class-type specific revenues, refunds for cancellations or no-shows as well as cost of overtime. For the calculation of the latter, information on the underlying appointment schedule is required. In contrast to most models in the literature we assume that the service time of clients is stochastic and that clients might be unpunctual. Throughout the paper we will relate the problem to capacity allocation in radiology services. The problem is modeled as a continuous-time Markov decision process and solved using simulation-based approximate dynamic programming (ADP) combined with a discrete event simulation of the service period. We employ an adapted heuristic ADP algorithm from the literature and investigate on the benefits of applying ADP to this type of problem. First, we study a simplified problem with deterministic service times and punctual arrival of clients and compare the solution from the ADP algorithm to the optimal solution. We find that the heuristic ADP algorithm performs very well in terms of objective function value, solution time, and memory requirements. Second, we study the problem with stochastic service times and unpunctuality. It is then shown that the resulting policy constitutes a large improvement over an “optimal” policy that is deduced using restrictive, simplifying assumptions.