دانلود مقاله ISI انگلیسی شماره 92975
ترجمه فارسی عنوان مقاله

ادغام تجزیه و تحلیل تصویر مبتنی بر شئ فازی و بهینه سازی کلون مورچه برای استخراج جاده از تصاویر حساس از راه دور

عنوان انگلیسی
Integrating fuzzy object based image analysis and ant colony optimization for road extraction from remotely sensed images
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
92975 2018 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : ISPRS Journal of Photogrammetry and Remote Sensing, Volume 138, April 2018, Pages 151-163

ترجمه کلمات کلیدی
استخراج جاده، بهینه سازی کلینیک مورچه، سیستم منطقی فازی، تجزیه و تحلیل تصویر مبتنی بر شی،
کلمات کلیدی انگلیسی
Road extraction; Ant colony optimization; Fuzzy logic system; Object based image analysis;
پیش نمایش مقاله
پیش نمایش مقاله  ادغام تجزیه و تحلیل تصویر مبتنی بر شئ فازی و بهینه سازی کلون مورچه برای استخراج جاده از تصاویر حساس از راه دور

چکیده انگلیسی

Updated road network as a crucial part of the transportation database plays an important role in various applications. Thus, increasing the automation of the road extraction approaches from remote sensing images has been the subject of extensive research. In this paper, we propose an object based road extraction approach from very high resolution satellite images. Based on the object based image analysis, our approach incorporates various spatial, spectral, and textural objects’ descriptors, the capabilities of the fuzzy logic system for handling the uncertainties in road modelling, and the effectiveness and suitability of ant colony algorithm for optimization of network related problems. Four VHR optical satellite images which are acquired by Worldview-2 and IKONOS satellites are used in order to evaluate the proposed approach. Evaluation of the extracted road networks shows that the average completeness, correctness, and quality of the results can reach 89%, 93% and 83% respectively, indicating that the proposed approach is applicable for urban road extraction. We also analyzed the sensitivity of our algorithm to different ant colony optimization parameter values. Comparison of the achieved results with the results of four state-of-the-art algorithms and quantifying the robustness of the fuzzy rule set demonstrate that the proposed approach is both efficient and transferable to other comparable images.