دانلود مقاله ISI انگلیسی شماره 92985
ترجمه فارسی عنوان مقاله

بهینه سازی کارآیی مورچه ها در واحد پردازش گرافیکی

عنوان انگلیسی
High-throughput Ant Colony Optimization on graphics processing units
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
92985 2018 36 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Parallel and Distributed Computing, Volume 113, March 2018, Pages 261-274

پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی کارآیی مورچه ها در واحد پردازش گرافیکی

چکیده انگلیسی

Nowadays, computer researchers can face ever-complex scientific problems by using a hardware and software co-design. One successful approach is exploring novel massively-parallel Natural-inspired algorithms, such as the Ant Colony Optimization (ACO) algorithm, through the exploitation of high-throughput accelerators such as GPUs, which are designed to provide high levels of parallelism and low Energy per instruction (EP) cost through heavy vectorization. In this paper, we demonstrate how to take advantage of contemporary hardware-based CUDA vectorization to optimize the ACO algorithm when applied to the Traveling Salesman Problem (TSP). Several parallel designs are proposed and analyzed on two different CUDA architectures. Our results reveal that our vectorization approaches can obtain good performance on these architectures. Moreover, atomic operations are under study showing good benefits on latest generations of CUDA architectures. This work lays the groundwork for future developments of ACO algorithm on high-performance platforms.