دانلود مقاله ISI انگلیسی شماره 92989
ترجمه فارسی عنوان مقاله

جمع بندی وزنی از رتبه بندی های جزئی با استفاده از بهینه سازی کلبه ی مورچه

عنوان انگلیسی
Weighted aggregation of partial rankings using Ant Colony Optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
92989 2017 39 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 250, 9 August 2017, Pages 109-120

پیش نمایش مقاله
پیش نمایش مقاله  جمع بندی وزنی از رتبه بندی های جزئی با استفاده از بهینه سازی کلبه ی مورچه

چکیده انگلیسی

The aggregation of preferences (expressed in the form of rankings) from multiple experts is a well-studied topic in a number of fields. The Kemeny ranking problem aims at computing an aggregated ranking having minimal distance to the global consensus. However, it assumes that these rankings will be complete, i.e., all elements are explicitly ranked by the expert. This assumption may not simply hold when, for instance, an expert ranks only the top-K items of interest, thus creating a partial ranking. In this paper we formalize the weighted Kemeny ranking problem for partial rankings, an extension of the Kemeny ranking problem that is able to aggregate partial rankings from multiple experts when only a limited number of relevant elements are explicitly ranked (top-K), and this number may vary from one expert to another (top-Ki). Moreover, we introduce two strategies to quantify the weight of each partial ranking. We cast this problem within the realm of combinatorial optimization and lean on the successful Ant Colony Optimization (ACO) metaheuristic algorithm to arrive at high-quality solutions. The proposed approach is evaluated through a real-world scenario and 190 synthetic datasets from www.PrefLib.org. The experimental evidence indicates that the proposed ACO-based solution is capable of significantly outperforming several evolutionary approaches that proved to be very effective when dealing with the Kemeny ranking problem.