دانلود مقاله ISI انگلیسی شماره 92991
ترجمه فارسی عنوان مقاله

بهینه سازی مستعمرات مورچه بیزی برای رفع ارزش های از دست رفته در پایگاه داده های بزرگ به طور اوریگرا

عنوان انگلیسی
Heuristically repopulated Bayesian ant colony optimization for treating missing values in large databases
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
92991 2017 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 133, 1 October 2017, Pages 107-121

ترجمه کلمات کلیدی
ارزش از دست رفته، ویژگی های ناهمگن، بهینه سازی کلینیک مورچه، روشهای بیزی، جمع شدن
کلمات کلیدی انگلیسی
Missing values; Heterogeneous attributes; Ant colony optimization; Bayesian methods; Repopulation;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی مستعمرات مورچه بیزی برای رفع ارزش های از دست رفته در پایگاه داده های بزرگ به طور اوریگرا

چکیده انگلیسی

The incomplete datasets with missing values are unsuitable for making strategic decisions since they lead to biased results. This problem is even worse when the dataset is large and collected from many heterogeneous sources. The paper deals with missing scenarios which were not dealt together earlier. The proposed Dual Repopulated Bayesian Ant Colony Optimization (DPBACO) handles both ignorable and non-ignorable missing values in heterogeneous attributes of large datasets The DPBACO integrates Bayesian principles with Ant Colony Optimization technique since both are simple and efficient to implement. After pheromone updation, repopulation of the solution pool is done by dividing the population into two based on their fitness values and generating new offsprings by performing crossover operation. The DPBACO algorithm is implemented on six large mixed-attribute datasets for imputing both kinds of missing values. The empirical and statistical results show that DPBACO performs better than other existing methods at variable missing rates ranging from 5% to 50%.