دانلود مقاله ISI انگلیسی شماره 93021
ترجمه فارسی عنوان مقاله

طبقه بندی تصویر سنجش از راه دور بر اساس ماشین بردار پشتیبان بهینه و الگوریتم بهینه سازی دودویی اصلاح شده باینری اصلاح شده است

عنوان انگلیسی
Remote sensing image classification based on the optimal support vector machine and modified binary coded ant colony optimization algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
93021 2017 23 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 402, September 2017, Pages 50-68

پیش نمایش مقاله
پیش نمایش مقاله  طبقه بندی تصویر سنجش از راه دور بر اساس ماشین بردار پشتیبان بهینه و الگوریتم بهینه سازی دودویی اصلاح شده باینری اصلاح شده است

چکیده انگلیسی

Support vector machine (SVM) is one of the most successful classifiers for remote sensing image classification. However, the performance of SVM is mainly dependent on its parameters; in addition, for remote sensing images with high-dimensional features, feature redundancy will have a major influence on the classification efficiency and accuracy. Feature selection and parameter optimization are two important factors for improving the performance of SVM and are traditionally solved separately. In fact, these two issues are affected by each other, so to obtain the better classification performance, selection of the optimal feature subset and tuning of SVM parameters should be considered simultaneously, as they both belong to the combinatorial optimization problem and could be handled with evolutionary algorithms or swarm intelligence algorithms. In this paper, a remote sensing image classification technique based on the optimal SVM is proposed, in which the parameters of SVM and feature selection are handled integrally by a modified coded ant colony optimization algorithm combined with genetic algorithm. The results are compared with other evolutionary algorithms and swarm intelligence algorithms, such as genetic algorithm (GA), binary-coded particle swarm optimization (BPSO) algorithm, binary-coded ant colony optimization (BACO) algorithm, binary-coded differential evolution (BDE) algorithm, and binary-coded cuckoo search (BCS) algorithm. It is demonstrated that the proposed method is robust, adaptive and exhibits the better performance than the other methods involved in the paper in terms of fitness values, so could be suitable for some practical applications.