دانلود مقاله ISI انگلیسی شماره 93033
ترجمه فارسی عنوان مقاله

طراحی و توسعه یک الگوریتم جستجوی محله متغیر مورچه هیبرید برای یک مساله مسیریابی سبز چند منظوره سبز

عنوان انگلیسی
Design and development of a hybrid ant colony-variable neighbourhood search algorithm for a multi-depot green vehicle routing problem
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
93033 2017 36 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Transportation Research Part D: Transport and Environment, Volume 57, December 2017, Pages 422-457

ترجمه کلمات کلیدی
مشکل مسیریابی خودرو اثرات زیست محیطی، مدل برنامه ریزی خطی کامل، بهینه سازی کلینیک مورچه، متغیر جستجوی محله،
کلمات کلیدی انگلیسی
Vehicle routing problem; Environmental impact; Integer linear programming model; Ant colony optimization; Variable neighbourhood search;
پیش نمایش مقاله
پیش نمایش مقاله  طراحی و توسعه یک الگوریتم جستجوی محله متغیر مورچه هیبرید برای یک مساله مسیریابی سبز چند منظوره سبز

چکیده انگلیسی

The traditional distribution planning problem in a supply chain has often been studied mainly with a focus on economic benefits. The growing concern about the effects of anthropogenic pollutions has forced researchers and supply chain practitioners to address the socio-environmental concerns. This research study focuses on incorporating the environmental impact on route design problem. In this work, the aim is to integrate both the objectives, namely economic cost and emission cost reduction for a capacitated multi-depot green vehicle routing problem. The proposed models are a significant contribution to the field of research in green vehicle routing problem at the operational level. The formulated integer linear programming model is solved for a set of small scale instances using LINGO solver. A computationally efficient Ant Colony Optimization (ACO) based meta-heuristic is developed for solving both small scale and large scale problem instances in reasonable amount of time. For solving large scale instances, the performance of the proposed ACO based meta-heuristic is improved by integrating it with a variable neighbourhood search.