دانلود مقاله ISI انگلیسی شماره 137505
ترجمه فارسی عنوان مقاله

تحقیق و کاربرد یک چارچوب پیش بینی ترکیبی مبتنی بر بهینه سازی چند منظوره برای سیستم قدرت الکتریکی

عنوان انگلیسی
Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
137505 2018 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy, Volume 148, 1 April 2018, Pages 59-78

ترجمه کلمات کلیدی
سیستم برق برق، چارچوب پیش بینی ترکیبی، الگوریتم بهینه سازی چند هدفه، دقت پیش بینی و ثبات،
کلمات کلیدی انگلیسی
Electrical power system; Hybrid forecasting framework; Multi-objective optimization algorithm; Forecasting accuracy and stability;
پیش نمایش مقاله
پیش نمایش مقاله  تحقیق و کاربرد یک چارچوب پیش بینی ترکیبی مبتنی بر بهینه سازی چند منظوره برای سیستم قدرت الکتریکی

چکیده انگلیسی

Electrical power system (EPS) forecasting plays a significant role in economic and social development but it remains an extremely challenging task. Because of its significance, relevant studies on EPS are especially needed. More specifically, only a few of the previous studies in this area conducted in-depth investigations of the entire EPS forecasting and merely focused on modeling individual signals centered on wind speed or electrical load. Moreover, most of these past studies concentrated on accuracy improvements and usually ignore the significance of forecasting stability. Therefore, to simultaneously achieve high accuracy and dependable stability, a hybrid forecasting framework based on the multi-objective dragonfly algorithm (MODA) was successfully developed in this study. The framework consists of four modules—data preprocessing, optimization, forecasting, and evaluation modules. In this framework, MODA is employed to optimize the Elman neural network (ENN) model as a part of the optimization module to overcome the drawbacks of single-objective optimization algorithms. In addition, data preprocessing and evaluation modules are incorporated to improve forecasting performance and conduct a comprehensive evaluation for this framework, respectively. Empirical results reveal that the developed forecasting framework can be an effective tool for the planning and management of power grids.