دانلود مقاله ISI انگلیسی شماره 137821
ترجمه فارسی عنوان مقاله

کاربرد محاسبات تکاملی بر پیش بینی بارش کم بارش

عنوان انگلیسی
Application of evolutionary computation on ensemble forecast of quantitative precipitation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
137821 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Geosciences, Volume 106, September 2017, Pages 139-149

ترجمه کلمات کلیدی
گروه پیش بینی هوا، بارش کمی محاسبات تکاملی، برنامه نویسی ژنتیک،
کلمات کلیدی انگلیسی
Ensemble weather forecast; Quantitative precipitation; Evolutionary computation; Genetic programming;
پیش نمایش مقاله
پیش نمایش مقاله  کاربرد محاسبات تکاملی بر پیش بینی بارش کم بارش

چکیده انگلیسی

An evolutionary computation algorithm known as genetic programming (GP) has been explored as an alternative tool for improving the ensemble forecast of 24-h accumulated precipitation. Three GP versions and six ensembles’ languages were applied to several real-world datasets over southern, southeastern and central Brazil during the rainy period from October to February of 2008–2013. According to the results, the GP algorithms performed better than two traditional statistical techniques, with errors 27–57% lower than simple ensemble mean and the MASTER super model ensemble system. In addition, the results revealed that GP algorithms outperformed the best individual forecasts, reaching an improvement of 34–42%. On the other hand, the GP algorithms had a similar performance with respect to each other and to the Bayesian model averaging, but the former are far more versatile techniques. Although the results for the six ensembles’ languages are almost indistinguishable, our most complex linear language turned out to be the best overall proposal. Moreover, some meteorological attributes, including the weather patterns over Brazil, seem to play an important role in the prediction of daily rainfall amount.