دانلود مقاله ISI انگلیسی شماره 137831
ترجمه فارسی عنوان مقاله

مهندسی ویژگی های خودکار برای مدل های رگرسیون با یادگیری ماشین: محاسبات تکاملی و آمار ترکیبی

عنوان انگلیسی
Automatic feature engineering for regression models with machine learning: An evolutionary computation and statistics hybrid
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
137831 2018 27 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volumes 430–431, March 2018, Pages 287-313

ترجمه کلمات کلیدی
مهندسی ویژگی، فراگیری ماشین، رگرسیون نمادین، برنامه نویسی کایزن، رگرسیون خطی، برنامه نویسی ژنتیک، ترکیبی،
کلمات کلیدی انگلیسی
Feature engineering; Machine learning; Symbolic regression; Kaizen programming; Linear regression; Genetic programming; Hybrid;
پیش نمایش مقاله
پیش نمایش مقاله  مهندسی ویژگی های خودکار برای مدل های رگرسیون با یادگیری ماشین: محاسبات تکاملی و آمار ترکیبی

چکیده انگلیسی

Symbolic Regression (SR) is a well-studied task in Evolutionary Computation (EC), where adequate free-form mathematical models must be automatically discovered from observed data. Statisticians, engineers, and general data scientists still prefer traditional regression methods over EC methods because of the solid mathematical foundations, the interpretability of the models, and the lack of randomness, even though such deterministic methods tend to provide lower quality prediction than stochastic EC methods. On the other hand, while EC solutions can be big and uninterpretable, they can be created with less bias, finding high-quality solutions that would be avoided by human researchers. Another interesting possibility is using EC methods to perform automatic feature engineering for a deterministic regression method instead of evolving a single model; this may lead to smaller solutions that can be easy to understand. In this contribution, we evaluate an approach called Kaizen Programming (KP) to develop a hybrid method employing EC and Statistics. While the EC method builds the features, the statistical method efficiently builds the models, which are also used to provide the importance of the features; thus, features are improved over the iterations resulting in better models. Here we examine a large set of benchmark SR problems known from the EC literature. Our experiments show that KP outperforms traditional Genetic Programming - a popular EC method for SR - and also shows improvements over other methods, including other hybrids and well-known statistical and Machine Learning (ML) ones. More in line with ML than EC approaches, KP is able to provide high-quality solutions while requiring only a small number of function evaluations.