دانلود مقاله ISI انگلیسی شماره 137845
ترجمه فارسی عنوان مقاله

الگوریتم تکاملی چند منظوره دوبلوری موازی برای بهینه سازی قوی

عنوان انگلیسی
A parallel double-level multiobjective evolutionary algorithm for robust optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
137845 2017 33 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 59, October 2017, Pages 258-275

پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم تکاملی چند منظوره دوبلوری موازی برای بهینه سازی قوی

چکیده انگلیسی

Robust optimization is a popular method to tackle uncertain optimization problems. However, traditional robust optimization can only find a single solution in one run which is not flexible enough for decision-makers to select a satisfying solution according to their preferences. Besides, traditional robust optimization often takes a large number of Monte Carlo simulations to get a numeric solution, which is quite time-consuming. To address these problems, this paper proposes a parallel double-level multiobjective evolutionary algorithm (PDL-MOEA). In PDL-MOEA, a single-objective uncertain optimization problem is translated into a bi-objective one by conserving the expectation and the variance as two objectives, so that the algorithm can provide decision-makers with a group of solutions with different stabilities. Further, a parallel evolutionary mechanism based on message passing interface (MPI) is proposed to parallel the algorithm. The parallel mechanism adopts a double-level design, i.e., global level and sub-problem level. The global level acts as a master, which maintains the global population information. At the sub-problem level, the optimization problem is decomposed into a set of sub-problems which can be solved in parallel, thus reducing the computation time. Experimental results show that PDL-MOEA generally outperforms several state-of-the-art serial/parallel MOEAs in terms of accuracy, efficiency, and scalability.