دانلود مقاله ISI انگلیسی شماره 137883
ترجمه فارسی عنوان مقاله

تعادل اکتشاف، عدم قطعیت و نیازهای محاسباتی در بسیاری از بهینه سازی مخزن هدف

عنوان انگلیسی
Balancing exploration, uncertainty and computational demands in many objective reservoir optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
137883 2017 52 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Advances in Water Resources, Volume 109, November 2017, Pages 196-210

ترجمه کلمات کلیدی
کنترل مخزن چند منظوره جستجوی سیاست مستقیم بهینه سازی تکامل چند هدفه، استراتژی های موازی، عدم قطعیت،
کلمات کلیدی انگلیسی
Multi-purpose reservoir control; Direct policy search; Multi-objective evolutionary optimization; Parallel strategies; Uncertainty;
پیش نمایش مقاله
پیش نمایش مقاله  تعادل اکتشاف، عدم قطعیت و نیازهای محاسباتی در بسیاری از بهینه سازی مخزن هدف

چکیده انگلیسی

Reservoir operations are central to our ability to manage river basin systems serving conflicting multi-sectoral demands under increasingly uncertain futures. These challenges motivate the need for new solution strategies capable of effectively and efficiently discovering the multi-sectoral tradeoffs that are inherent to alternative reservoir operation policies. Evolutionary many-objective direct policy search (EMODPS) is gaining importance in this context due to its capability of addressing multiple objectives and its flexibility in incorporating multiple sources of uncertainties. This simulation-optimization framework has high potential for addressing the complexities of water resources management, and it can benefit from current advances in parallel computing and meta-heuristics. This study contributes a diagnostic assessment of state-of-the-art parallel strategies for the auto-adaptive Borg Multi Objective Evolutionary Algorithm (MOEA) to support EMODPS. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple sectoral demands from hydropower production, urban water supply, recreation and environmental flows need to be balanced. Using EMODPS with different parallel configurations of the Borg MOEA, we optimize operating policies over different size ensembles of synthetic streamflows and evaporation rates. As we increase the ensemble size, we increase the statistical fidelity of our objective function evaluations at the cost of higher computational demands. This study demonstrates how to overcome the mathematical and computational barriers associated with capturing uncertainties in stochastic multiobjective reservoir control optimization, where parallel algorithmic search serves to reduce the wall-clock time in discovering high quality representations of key operational tradeoffs. Our results show that emerging self-adaptive parallelization schemes exploiting cooperative search populations are crucial. Such strategies provide a promising new set of tools for effectively balancing exploration, uncertainty, and computational demands when using EMODPS.