دانلود مقاله ISI انگلیسی شماره 137924
ترجمه فارسی عنوان مقاله

یک روش آرشیوی مبتنی بر تجزیه برای بهینه سازی تکامل چند هدف

عنوان انگلیسی
A decomposition-based archiving approach for multi-objective evolutionary optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
137924 2018 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volumes 430–431, March 2018, Pages 397-413

ترجمه کلمات کلیدی
بهینه سازی تکاملی، بهینه سازی چند هدفه، بایگانی، تجزیه،
کلمات کلیدی انگلیسی
Evolutionary optimization; Multi-objective optimization; Archive; Decomposition;
پیش نمایش مقاله
پیش نمایش مقاله  یک روش آرشیوی مبتنی بر تجزیه برای بهینه سازی تکامل چند هدف

چکیده انگلیسی

External archive can be used to improve the performance of a multi-objective evolutionary algorithm. Various archiving approaches have been developed but with some drawbacks. These drawbacks such as computation-inefficiency, retreating and shrinking, have not yet been well addressed. In this paper, we propose an efficient decomposition-based archiving approach (DAA) inspired from the decomposition strategy for dealing with multi-objective optimization. In DAA, the whole objective space is uniformly divided into a number of subspaces according to a set of weight vectors. At each generation, only one non-dominated solution lying in a subspace is chosen to be used for updating the external archive in consideration of its diversity. A normalized distance-based method, incorporated with the Pareto dominance, is proposed to decide which subspace a new solution should fall into, and whether this solution should replace existing one in this subspace or not. Empirical results on a diverse set of benchmark test problems show that DAA is more efficient than a number of state-of-the-art archiving methods in terms of the diversity of the obtained non-dominated solutions; and DAA can accelerate the convergence speed of the evolutionary search for most test problems.