دانلود مقاله ISI انگلیسی شماره 138297
ترجمه فارسی عنوان مقاله

شناسایی منطقه جریان آب برای مخازن نفت بر اساس روش هوشمند سازی هوش مصنوعی خوشه ای ساده

عنوان انگلیسی
Water flooding flowing area identification for oil reservoirs based on the method of streamline clustering artificial intelligence
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
138297 2018 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Petroleum Exploration and Development, Volume 45, Issue 2, April 2018, Pages 328-335

ترجمه کلمات کلیدی
سیل آب، راندمان آب سیل، شناسایی میدان جریان، شبیه سازی ساده، الگوریتم خوشه ای، هوش مصنوعی،
کلمات کلیدی انگلیسی
water flooding; water flooding efficiency; flow field identification; streamline simulation; cluster algorithm; artificial intelligence;
پیش نمایش مقاله
پیش نمایش مقاله  شناسایی منطقه جریان آب برای مخازن نفت بر اساس روش هوشمند سازی هوش مصنوعی خوشه ای ساده

چکیده انگلیسی

For the case of carbonate reservoir water flooding development, the flow field identification method based on streamline modeling result was proposed. The Ocean for Petrel platform was used to build the plug-in that exported the streamline data, and the subsequent data was processed and clustered through Python programming, to display the flow field with different water flooding efficiencies at different time in the reservoir. We used density peak clustering as primary streamline cluster algorithm, and Silhouette algorithm as the cluster validation algorithm to select reasonable cluster number, and the results of different clustering algorithms were compared. The results showed that the density peak clustering algorithm could provide better identified capacity and higher Silhouette coefficient than K-means, hierachical clustering and spectral clustering algorithms when clustering coefficients are the same. Based on the results of streamline clustering method, the reservoir engineers can easily identify the flow area with quantification treatment, the inefficient water injection channels and area with developing potential in reservoirs can be identified. Meanwhile, streamlines between the same injector and producer can be subdivided to describe driving capacity distribution in water phase, providing useful information for the decision making of water flooding optimization, well pattern adjustment and deep profile modification.