دانلود مقاله ISI انگلیسی شماره 138456
ترجمه فارسی عنوان مقاله

نمایندگی استاندارد و تحلیل ثبات متحد برای مدلهای شبکه عصبی مصنوعی

عنوان انگلیسی
Standard representation and unified stability analysis for dynamic artificial neural network models
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
138456 2018 39 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neural Networks, Volume 98, February 2018, Pages 251-262

ترجمه کلمات کلیدی
شبکه های عصبی مصنوعی پویا، تجزیه و تحلیل ثبات غیر خطی، ثبات مطلق، برنامه نویسی نیمه تمام نابرابریهای ماتریس خطی،
کلمات کلیدی انگلیسی
Dynamic artificial neural networks; Nonlinear stability analysis; Absolute stability; Semidefinite programming; Linear matrix inequalities;
پیش نمایش مقاله
پیش نمایش مقاله  نمایندگی استاندارد و تحلیل ثبات متحد برای مدلهای شبکه عصبی مصنوعی

چکیده انگلیسی

An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions.