دانلود مقاله ISI انگلیسی شماره 138501
ترجمه فارسی عنوان مقاله

شناسایی سیستم های غیرخطی با استفاده از شبکه های عصبی مصنوعی با تجزیه حالت تجربی افزایش می یابد

عنوان انگلیسی
Nonlinear aircraft system identification using artificial neural networks enhanced by empirical mode decomposition
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
138501 2018 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Aerospace Science and Technology, Volume 75, April 2018, Pages 155-171

پیش نمایش مقاله
پیش نمایش مقاله  شناسایی سیستم های غیرخطی با استفاده از شبکه های عصبی مصنوعی با تجزیه حالت تجربی افزایش می یابد

چکیده انگلیسی

This paper aims to improve the performance of artificial neural networks used for the aircraft system identification by taking flight dynamic characteristics into consideration. In the proposed method, flight dynamic modes are recognized, isolated, and inputted individually to feed-forward neural networks. This method has several advantages such as being adaptive, involving all observable modes in the identification process, considering interactions between longitudinal and lateral-directional modes, and reducing noise effects. Simulated and real flight data of the HARV aircraft at high-angle of attack maneuvers are employed to train the neural networks and evaluate them. Results demonstrate improved accuracy and generality of the proposed method in comparison with the conventional ones.