دانلود مقاله ISI انگلیسی شماره 138543
ترجمه فارسی عنوان مقاله

فیزیک آماری و بازنمایی در شبکه های عصبی واقعی و مصنوعی

عنوان انگلیسی
Statistical physics and representations in real and artificial neural networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
138543 2017 37 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Physica A: Statistical Mechanics and its Applications, Available online 12 December 2017

پیش نمایش مقاله
پیش نمایش مقاله  فیزیک آماری و بازنمایی در شبکه های عصبی واقعی و مصنوعی

چکیده انگلیسی

This document presents the material of two lectures on statistical physics and neural representations, delivered by one of us (R.M.) at the Fundamental Problems in Statistical Physics XIV summer school in July 2017. In a first part, we consider the neural representations of space (maps) in the hippocampus. We introduce an extension of the Hopfield model, able to store multiple spatial maps as continuous, finite-dimensional attractors. The phase diagram and dynamical properties of the model are analyzed. We then show how spatial representations can be dynamically decoded using an effective Ising model capturing the correlation structure in the neural data, and compare applications to data obtained from hippocampal multi-electrode recordings and by (sub)sampling our attractor model. In a second part, we focus on the problem of learning data representations in machine learning, in particular with artificial neural networks. We start by introducing data representations through some illustrations. We then analyze two important algorithms, Principal Component Analysis and Restricted Boltzmann Machines, with tools from statistical physics.