دانلود مقاله ISI انگلیسی شماره 138594
ترجمه فارسی عنوان مقاله

بهینه سازی مدل شبکه عصبی مصنوعی برای پیش بینی دینامیک کلروفیل

عنوان انگلیسی
An optimization of artificial neural network model for predicting chlorophyll dynamics
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
138594 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Ecological Modelling, Volume 364, 24 November 2017, Pages 42-52

ترجمه کلمات کلیدی
شبکه های عصبی مصنوعی، دینامیک کلروفیل، شکوفه قلیایی، سری زمانی غیر ثابت
کلمات کلیدی انگلیسی
Artificial neural networks; Chlorophyll dynamics; Algal bloom; Non-stationary time series;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی مدل شبکه عصبی مصنوعی برای پیش بینی دینامیک کلروفیل

چکیده انگلیسی

As one of the factors to represent some species of algae, chlorophyll dynamics model has been regarded as one of the early-warning proactive approaches to prevent or mitigate the occurrence of some algal blooms. To decrease the cost of aquatic environmental in-situ monitoring and increase the accuracy of bloom forecasting, a traditional artificial neural network (ANN) based chlorophyll dynamics prediction model had been optimized. This optimization approach was conducted by presenting the change of chlorophyll value rather than the base value of chlorophyll as the output variable of the network. Both of the optimized and traditional networks had been applied to a case study. The results of model performance indices show that the optimized network predicts better than the traditional network. Furthermore, the non-stationary time series was employed to explain this phenomenon from a theoretical aspect. The proposed approach for chlorophyll dynamics ANN model optimization could assist the essential proactive strategy for algal bloom control.