دانلود مقاله ISI انگلیسی شماره 138688
ترجمه فارسی عنوان مقاله

کارشناسان فرایند گاوسی در چند مقیاس برای پیش بینی پویای سیستم های پیچیده

عنوان انگلیسی
Multi-scale Gaussian process experts for dynamic evolution prediction of complex systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
138688 2018 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 99, 1 June 2018, Pages 25-31

ترجمه کلمات کلیدی
پردازش گاوسی چند ضلعی، تجزیه زمان در مقیاس ذاتی، غیر خطی، غیر متناوب، پیش بینی چند مرحله ای،
کلمات کلیدی انگلیسی
Multi-scale Gaussian process; Intrinsic time-scale decomposition; Nonlinear; Nonstationary; Multi-step forecasting;
پیش نمایش مقاله
پیش نمایش مقاله  کارشناسان فرایند گاوسی در چند مقیاس برای پیش بینی پویای سیستم های پیچیده

چکیده انگلیسی

Predictive analytics has become an important topic in expert and intelligent systems, with broad applications across various engineering and business domains, such as the prediction of exchange rate in finance, weather and demand for energy using mixture of experts. However, selection of the number of experts and assignment of the input to individual experts remain elusive, especially for highly nonlinear and nonstationary systems. This paper presents a novel mixture of experts, namely, nonparametric multi-scale Gaussian process (MGP) experts to predict the dynamic evolution of such complex systems. Concretely, intrinsic time-scale decomposition is first used to iteratively decompose the time series generated from such complex systems into a series of proper rotation components and a baseline trend component. Those components delineate the true time-frequency-energy patterns of the complex systems at different granularity. A Gaussian process (GP) expert is then applied on each component to predict the system evolution at each scale. MGP circumvent the tedious selection and assignment problems via the nonparametric ITD. Summation of those individual forecasts represents the overall evolution of the original time series. Case studies using synthetic and real-world data elucidated that the proposed MGP model significantly outperforms conventional autoregressive models, composite GP model, and support vector regression in terms of prediction accuracy, and it is particularly effective for multi-step forecasting.