دانلود مقاله ISI انگلیسی شماره 141526
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل داده ها با استفاده از داده های توربین های با ولتاژ نامطلوب با استفاده از طیف سنجی طیف سنج و برآورد شدت سیگنال

عنوان انگلیسی
Analysis of extremely modulated faulty wind turbine data using spectral kurtosis and signal intensity estimator
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
141526 2018 38 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Renewable Energy, Volume 127, November 2018, Pages 258-268

ترجمه کلمات کلیدی
توربین های بادی، نظارت بر وضعیت، مجموعه داده های ارتعاش داده های مدولاسیون شده، بلبرینگ، برآورد شدت سیگنال، سوراخ طوفان،
کلمات کلیدی انگلیسی
Wind turbines; Condition monitoring; Vibration dataset; Modulated data; Bearings; Signal intensity estimator; Spectral kurtosis;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل داده ها با استفاده از داده های توربین های با ولتاژ نامطلوب با استفاده از طیف سنجی طیف سنج و برآورد شدت سیگنال

چکیده انگلیسی

The use of signal processing for condition monitoring of wind turbines data has been on-going since several decades. Failure in the analysis of high modulated data may make the machine break. An example of this is the reported real case of bearing failure on a Repower wind turbine, which could not be detected by currently applied methods. The machine had to be out of service immediately after a faulty bearing outer race was visually ascertained. Vibration dataset from this faulty machine was provided to facilitate research into wind turbines analysis and with the hope that the authors of this work can improve upon the existing techniques. In the response to this challenge, the authors of this paper proposed Spectral Kurtosis (SK) and Signal Intensity Estimator (SIE) as proven time-frequency fault indicators to tackle the question of data with different modulation rates. Extensive signal processing using time domain and time-frequency domain analysis was undertaken. It was concluded that SIE is well established mature approach and it provides a more reliable estimate of wind turbine conditions than conventional techniques such as SK, leading to better discrimination between “good” and “bad” machines.