دانلود مقاله ISI انگلیسی شماره 141713
ترجمه فارسی عنوان مقاله

تشخیص خطای چند هدفه تکاملی ترانسفورماتورهای قدرت

عنوان انگلیسی
Evolutionary multi-objective fault diagnosis of power transformers
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
141713 2017 40 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Swarm and Evolutionary Computation, Volume 36, October 2017, Pages 62-75

ترجمه کلمات کلیدی
بهینه سازی چند هدفه، انتخاب ویژگی، طبقه بندی گروهی، ترانسفورماتور قدرت تشخیص گسل، تجزیه و تحلیل گاز،
کلمات کلیدی انگلیسی
Multi-objective optimization; Feature selection; Ensemble classifiers; Power transformers; Fault diagnosis; Dissolved gas analysis;
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص خطای چند هدفه تکاملی ترانسفورماتورهای قدرت

چکیده انگلیسی

This paper introduces a two step algorithm for fault diagnosis of power transformers (2-ADOPT) using a binary version of the multi-objective particle swarm optimization (MOPSO) algorithm. Feature subset selection and ensemble classifier selection are implemented to improve the diagnosing accuracy for dissolved gas analysis (DGA) of power transformers. First, the proposed method selects the most effective features in a multi objective framework and the optimum number of features, simultaneously, which are used as inputs to train classifiers in the next step. The input features are composed of DGA performed on the oil of power transformers along with the various ratios of these gases. In the second step, the most accurate and diverse classifiers are selected to create a classifier ensemble. Finally, the outputs of selected classifiers are combined using the Dempster-Shafer combination rule in order to determine the actual faults of power transformers. In addition, the obtained results of the proposed method are compared to three other scenarios: 1) multi-objective ensemble classifier selection without any feature selection step which takes all the features to train classifiers and then applies MOPSO algorithm to find the best ensemble of classifiers, 2) a well-known classifier ensemble technique called random forests, and 3) another powerful decision tree ensemble which is called oblique random forests. The comparison results were favourable to the proposed method and showed the high reliability of this method for power transformers fault classification.