دانلود مقاله ISI انگلیسی شماره 46667
ترجمه فارسی عنوان مقاله

روش داده کاوی PD موثر برای مدل نقص ترانسفورماتور قدرت با استفاده از روش SOM

عنوان انگلیسی
An efficient PD data mining method for power transformer defect models using SOM technique
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46667 2015 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 71, October 2015, Pages 373–382

ترجمه کلمات کلیدی
سطح خاکستری ماتریس کواریانس - تجزیه و تحلیل گاز حل شده - فرکانس قدرت - آنالیز مولفه های اصلی - ضریب تلفات دی الکتریک
کلمات کلیدی انگلیسی
BMU, best match unit; Ch, channel; DDF, dielectric dissipation factor; DGA, dissolved gas analysis; DWT, discrete wavelet transform; FRA, frequency response analysis; GLCM, gray level covariance matrix; GLDV, gray level difference vector; Gs/s, giga sample per second; HFCT, high frequency current transformer; HV, high voltage; IR, insulation resistance; Lab, laboratory; Mpts, mega points; Ms/s, mega sample per second; Ng, gray level value; p.f., power frequency; PC, principal component; PCA, principal component analysis; PD, partial discharge; PDC, polarization and depolarization current; PRPD, phase resolved partial discharge; RVM, recovery voltage measurement; SOM, self-organizing map; SVM, Support Vector Machine; SNE, stochastic neighbor embeddingData mining; Power transformer; Defect model; Partial discharge; SOM
پیش نمایش مقاله
پیش نمایش مقاله  روش داده کاوی PD موثر برای مدل نقص ترانسفورماتور قدرت با استفاده از روش SOM

چکیده انگلیسی

Suggestion and application of a set of new features for on-line Partial Discharge (PD) monitoring, where there is no information about the type of PD is a challenging task for condition assessment of power equipments, such as a power transformer. This is looked for in this paper. So far, in past various techniques have been employed to develop a comprehensive PD monitoring system, however limited success has been achieved. One of the challenging issues in this field is the discovering of proper features capable of differentiating the involvement of possible types of PD sources. In order to examine the efficiency of the method established in this paper, which is based on application of a set of new feature spaces, texture feature analysis, followed by application of principal component analysis (PCA) and self-organizing map (SOM) is used to analyze and interpret the time-domain-captured PD data. The results of this work demonstrate the capabilities of the aforementioned features space to be used as a supplementary knowledge-base to help experts making their decisions confidently.