دانلود مقاله ISI انگلیسی شماره 141731
ترجمه فارسی عنوان مقاله

پیش بینی چند هدفه با استفاده از ترانسفورماتور قدرت

عنوان انگلیسی
Multi-objective ensemble forecasting with an application to power transformers
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
141731 2018 35 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 68, July 2018, Pages 233-248

ترجمه کلمات کلیدی
یادگیری گروهی الگوریتمهای تکاملی، بهینه سازی چند هدفه، پیش بینی سری زمانی، ترانسفورماتور قدرت
کلمات کلیدی انگلیسی
Ensemble learning; Evolutionary algorithms; Multi-objective optimization; Time series forecasting; Power transformers;
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی چند هدفه با استفاده از ترانسفورماتور قدرت

چکیده انگلیسی

In this paper we present an ensemble time series forecasting algorithm using evolutionary multi-objective optimization algorithms to predict dissolved gas contents in power transformers. In this method, the correlation between each individual dissolved gas and other transformers’ features such as temperature characteristics and loading history is first determined. Then, a non-linear principal component analysis (NLPCA) technique is applied to extract the most effective time series from the highly correlated features. Afterwards, the forecasting algorithms are trained using a cross validation technique. In addition, evolutionary multi-objective optimization algorithms are used to select the most accurate and diverse group of forecasting algorithms to construct an ensemble. Finally, the selected ensemble is examined to predict the value of the dissolved gases on the testing set. The results of one day, two day, three day, and four day ahead forecasting are presented which show higher accuracy and reliability of the proposed method compared with other statistical methods.