دانلود مقاله ISI انگلیسی شماره 151323
ترجمه فارسی عنوان مقاله

انتخاب مسابقات معنایی برای برنامه نویسی ژنتیکی بر اساس تجزیه و تحلیل آماری از بردارهای خطا

عنوان انگلیسی
Semantic tournament selection for genetic programming based on statistical analysis of error vectors
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
151323 2018 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volumes 436–437, April 2018, Pages 352-366

ترجمه کلمات کلیدی
برنامه نویسی ژنتیک، انتخاب مسابقات، آزمون آماری، کد نفخ، معناشناسی،
کلمات کلیدی انگلیسی
Genetic programming; Tournament selection; Statistical test; Code bloat; Semantics;
پیش نمایش مقاله
پیش نمایش مقاله  انتخاب مسابقات معنایی برای برنامه نویسی ژنتیکی بر اساس تجزیه و تحلیل آماری از بردارهای خطا

چکیده انگلیسی

The selection mechanism plays a very important role in the performance of Genetic Programming (GP). Among several selection techniques, tournament selection is often considered the most popular. Standard tournament selection randomly selects a set of individuals from the population and the individual with the best fitness value is chosen as the winner. However, an opportunity exists to enhance tournament selection as the standard approach ignores finer-grained semantics which can be collected during GP program execution. In the case of symbolic regression problems, the error vectors on the training fitness cases can be used in a more detailed quantitative comparison. In this paper we introduce the use of a statistical test into GP tournament selection that utilizes information from the individual’s error vector, and three variants of the selection strategy are proposed. We tested these methods on twenty five regression problems and their noisy variants. The experimental results demonstrate the benefit of the proposed methods in reducing GP code growth and improving the generalisation behaviour of GP solutions when compared to standard tournament selection, a similar selection technique and a state of the art bloat control approach.