دانلود مقاله ISI انگلیسی شماره 52498
ترجمه فارسی عنوان مقاله

بررسی شبکه های عصبی مصنوعی و برنامه نویسی ژنتیکی به عنوان ابزار پیش بینی

عنوان انگلیسی
Assessment of artificial neural network and genetic programming as predictive tools
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52498 2015 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Advances in Engineering Software, Volume 88, October 2015, Pages 63–72

ترجمه کلمات کلیدی
شبکه های عصبی مصنوعی - برنامه نویسی ژنتیک - مطالعه پارامتری
کلمات کلیدی انگلیسی
Artificial neural networks; Genetic programming; Over-fitting; Explicit formulation; Punching shear; RC slabs; Parametric study
پیش نمایش مقاله
پیش نمایش مقاله  بررسی شبکه های عصبی مصنوعی و برنامه نویسی ژنتیکی به عنوان ابزار پیش بینی

چکیده انگلیسی

Soft computing techniques have been widely used during the last two decades for nonlinear system modeling, specifically as predictive tools. In this study, the performances of two well-known soft computing predictive techniques, artificial neural network (ANN) and genetic programming (GP), are evaluated based on several criteria, including over-fitting potential. A case study in punching shear prediction of RC slabs is modeled here using a hybrid ANN (which includes simulated annealing and multi-layer perception) and an established GP variant called gene expression programming. The ANN and GP results are compared to values determined from several design codes. For more verification, external validation and parametric studies were also conducted. The results of this study indicate that model acceptance criteria should include engineering analysis from parametric studies.