دانلود مقاله ISI انگلیسی شماره 151426
ترجمه فارسی عنوان مقاله

بهینه سازی برنامه نویسی ژنتیک برای استراتژی بازاریابی بازخورد احساسات

عنوان انگلیسی
Genetic programming optimization for a sentiment feedback strength based trading strategy
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
151426 2017 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 264, 15 November 2017, Pages 29-41

ترجمه کلمات کلیدی
احساسات خبر احساس تنهایی بازار مالی، بازخورد، برنامه نویسی ژنتیک،
کلمات کلیدی انگلیسی
News sentiment; Tweet sentiment; Financial market; Feedback; Genetic programming;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی برنامه نویسی ژنتیک برای استراتژی بازاریابی بازخورد احساسات

چکیده انگلیسی

This study is motivated by the empirical findings that news and social media Twitter messages (tweets) exhibit persistent predictive power on financial market movement. Based on the evidence that tweets are faster than news in revealing new market information, whereas news is regarded broadly a more reliable source of information than tweets, we propose a superior trading strategy based on the sentiment feedback strength between the news and tweets using generic programming optimization method. The key intuition behind this feedback strength based approach is that the joint momentum of the two sentiment series leads to significant market signals, which can be exploited to generate superior trading profits. With the trade-off between information speed and its reliability, this study aims to develop an optimal trading strategy using investors’ sentiment feedback strength with the objective to maximize risk adjusted return measured by the Sterling ratio. We find that the sentiment feedback based strategies yield superior market returns with low maximum drawdown over the period from 2012 to 2015. In comparison, the strategies based on the sentiment feedback indicator generate over 14.7% Sterling ratio compared with 10.4% and 13.6% from the technical indicator-based strategies and the basic buy-and-hold strategy respectively. After considering transaction costs, the sentiment indicator based strategy outperforms the technical indicator based strategy consistently. Backtesting shows that the advantage is statistically significant. The result suggests that the sentiment feedback indicator provides support in controlling loss with lower maximum drawdown.