دانلود مقاله ISI انگلیسی شماره 151428
ترجمه فارسی عنوان مقاله

برنامه نویسی ژنتیک چند جمعیتی هماهنگ تکاملی برای طبقه بندی در پیش بینی نقص نرم افزار: مطالعه موردی تجربی

عنوان انگلیسی
Co-evolutionary multi-population genetic programming for classification in software defect prediction: An empirical case study
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
151428 2017 31 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 55, June 2017, Pages 331-351

پیش نمایش مقاله
پیش نمایش مقاله  برنامه نویسی ژنتیک چند جمعیتی هماهنگ تکاملی برای طبقه بندی در پیش بینی نقص نرم افزار: مطالعه موردی تجربی

چکیده انگلیسی

Evolving diverse ensembles using genetic programming has recently been proposed for classification problems with unbalanced data. Population diversity is crucial for evolving effective algorithms. Multilevel selection strategies that involve additional colonization and migration operations have shown better performance in some applications. Therefore, in this paper, we are interested in analysing the performance of evolving diverse ensembles using genetic programming for software defect prediction with unbalanced data by using different selection strategies. We use colonization and migration operators along with three ensemble selection strategies for the multi-objective evolutionary algorithm. We compare the performance of the operators for software defect prediction datasets with varying levels of data imbalance. Moreover, to generalize the results, gain a broader view and understand the underlying effects, we replicated the same experiments on UCI datasets, which are often used in the evolutionary computing community. The use of multilevel selection strategies provides reliable results with relatively fast convergence speeds and outperforms the other evolutionary algorithms that are often used in this research area and investigated in this paper. This paper also presented a promising ensemble strategy based on a simple convex hull approach and at the same time it raised the question whether ensemble strategy based on the whole population should also be investigated.