دانلود مقاله ISI انگلیسی شماره 151527
ترجمه فارسی عنوان مقاله

تعادل همزمان، توالی، و برنامه ریزی ایستگاه کاری برای یک مدل خطی تلفیقی مدل ترکیبی با استفاده از الگوریتم ژنتیک ترکیبی

عنوان انگلیسی
Simultaneous balancing, sequencing, and workstation planning for a mixed model manual assembly line using hybrid genetic algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
151527 2018 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Industrial Engineering, Volume 119, May 2018, Pages 370-387

ترجمه کلمات کلیدی
تعادل، ترتیب دهی، مدل برنامه ریزی خطی مختلط، خط مونتاژ مدل مخلوط، الگوریتم ژنتیک ترکیبی،
کلمات کلیدی انگلیسی
Balancing; Sequencing; Mixed integer linear programming model; Mixed model assembly line; Hybrid genetic algorithm;
پیش نمایش مقاله
پیش نمایش مقاله  تعادل همزمان، توالی، و برنامه ریزی ایستگاه کاری برای یک مدل خطی تلفیقی مدل ترکیبی با استفاده از الگوریتم ژنتیک ترکیبی

چکیده انگلیسی

Balancing and sequencing are two important challenging problems in designing mixed-model assembly lines. A large number of studies have addressed these two problems both independently and simultaneously. However, several important aspects such as assignment of common tasks between models to different workstations, and minimizing the number and length of workstations are not addressed in an integrated manner. In this paper, we proposed a mixed integer linear programming mathematical model by considering the above aspects simultaneously for a continuously moving conveyor. The objective function of the model is to minimize the length and number of workstations, costs of workstations and task duplications. Since the proposed model cannot be efficiently solved using commercially available packages, a multi-phased linear programming embedded genetic algorithm is developed. In the proposed algorithm, binary variables are determined using genetic search whereas continuous variables corresponding to the binary variables are determined by solving linear programming sub-problem using simplex algorithm. Several numerical examples with different sizes are presented to illustrate features of the proposed model and computational efficiency of the proposed hybrid genetic algorithm. A comparative study of genetic algorithm and simulated annealing is also conducted.