دانلود مقاله ISI انگلیسی شماره 153936
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل اثر انتقال حرارت در عملکرد ثابت و عملکرد یک هیبرید توربین هیبرید سلول سوختی اکسید جامد / گاز

عنوان انگلیسی
Analysis of the influence of heat transfer on the stationary operation and performance of a solid oxide fuel cell/gas turbine hybrid power plant
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
153936 2018 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Energy, Volume 211, 1 February 2018, Pages 479-491

ترجمه کلمات کلیدی
سلول سوختی اکسید جامد، توربین گازی، نیروگاه هیبریدی، از دست دادن حرارت، مدل سازی، شبیه سازی،
کلمات کلیدی انگلیسی
Solid oxide fuel cell; Gas turbine; Hybrid power plant; Heat loss; Modeling; Simulation;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل اثر انتقال حرارت در عملکرد ثابت و عملکرد یک هیبرید توربین هیبرید سلول سوختی اکسید جامد / گاز

چکیده انگلیسی

Hybrid power plants consisting of solid oxide fuel cells (SOFC) and a gas turbine (GT) can play an essential role in the future energy scenario due to the expected high electrical efficiency, fuel flexibility and good part-load performance. A demonstration SOFC/GT hybrid power plant is being setup in Stuttgart with state of the art, commercially available electrolyte supported cell (ESC) stacks and its operation is being simulated by means of a overall system model. However, the model used in this paper, in contrast to most models in literature, accounts for heat transfer based on actual geometries and materials. In the present study, the system model is integrated with a set of sub-models that predict the heat losses of the components of the hybrid power plant with a feasible computational speed. This allows for an improved prediction of the operating range as well as for the prevention of undesired operating conditions. The results of the simulations of the stationary operation of the hybrid power plant with varying heat losses are shown and discussed. Operating limitations are analyzed as well as system performance. It is shown that it is possible to operate the hybrid power plant from design power output to 30% of it. A system electrical efficiency higher than 0.55 considering the fuel’s higher heating value is maintained throughout the entire range. Further design choices and developments could lead to an improvement of this condition. In addition, an adiabatic assumption can lead to about 4 percentage points overestimation of electrical efficiency and reduces the high power operating range by about 10%. This approach opens up a new perspective on the simulation of this type of power plant.