دانلود مقاله ISI انگلیسی شماره 155400
ترجمه فارسی عنوان مقاله

پیش بینی بار از طریق شبکه های عمیق عصبی

عنوان انگلیسی
Load Forecasting via Deep Neural Networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
155400 2017 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Procedia Computer Science, Volume 122, 2017, Pages 308-314

ترجمه کلمات کلیدی
پیش بینی بار، شبکه عصبی انعقادی، شبکه عصبی مکرر، یادگیری عمیق،
کلمات کلیدی انگلیسی
Load Forecasting; Convolutional Neural Network; Recurrent Neural Network; Deep Learning;
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی بار از طریق شبکه های عمیق عصبی

چکیده انگلیسی

Nowadays, electricity plays a vital role in national economic and social development. Accurate load forecasting can help power companies to secure electricity supply and scheduling and reduce wastes since electricity is difficult to store. In this paper, we propose a novel Deep Neural Network architecture for short term load forecasting. We integrate multiple types of input features by using appropriate neural network components to process each of them. We use Convolutional Neural Network components to extract rich features from historical load sequence and use Recurrent Components to model the implicit dynamics. In addition, we use Dense layers to transform other types of features. Experimental results on a large data set containing hourly loads of a North China city show the superiority of our method. Moreover, the proposed method is quite flexible and can be applied to other time series prediction tasks.