دانلود مقاله ISI انگلیسی شماره 156370
ترجمه فارسی عنوان مقاله

فعال کردن تدارکات نسل بعدی و برنامه ریزی برای انجمن های دقیق

عنوان انگلیسی
Enabling Next Generation Logistics and Planning for Smarter Societies
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
156370 2017 6 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Procedia Computer Science, Volume 109, 2017, Pages 1122-1127

ترجمه کلمات کلیدی
شهرهای هوشمند، جوامع هوشمند، اطلاعات بزرگ، محاسبات با کارایی بالا، تجزیه و تحلیل شبکه شبکه، تدارکات، برنامه ریزی، حمل و نقل،
کلمات کلیدی انگلیسی
Smart Cities; Smart Societies; Big Data; High Performance Computing; Social network Analysis; Logistics; Planning; Transportation;
پیش نمایش مقاله
پیش نمایش مقاله  فعال کردن تدارکات نسل بعدی و برنامه ریزی برای انجمن های دقیق

چکیده انگلیسی

Social media has revolutionized our societies. It has made fundamental impact on the way we work and live. More importantly, social media is gradually becoming a key pulse of smart societies by sensing the information about the people and their spatio-temporal experiences around the living spaces. Big data and computational intelligence technologies are helping us to manage and analyze large amounts of data generated by the social media, such as twitter, and make informed decisions about us and the living spaces. This paper reports our preliminary work on the use of social media for the detection of spatio-temporal events related to logistics and planning. Specifically, we use big data and AI platforms including Hadoop, Spark, and Tableau, to study twitter data about London. Moreover, we use the Google Maps Geocoding API to locate the tweeters and make additional analysis. We find and locate congestion around the London city. We also discover that, during a certain period, top third tweeted words were about job and hiring, leading us to locate the source of the tweets which happened to be originating from around the Canary Wharf area, UK's major financial center. The results presented in the paper have been obtained using 500,000 tweets.