دانلود مقاله ISI انگلیسی شماره 158572
ترجمه فارسی عنوان مقاله

یک چارچوب یکپارچه از ماشین های یادگیری شدید برای پیش بینی پاشیدن در گروه های شمع در شرایط آب آشامیدنی

عنوان انگلیسی
An integrated framework of Extreme Learning Machines for predicting scour at pile groups in clear water condition
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
158572 2018 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Coastal Engineering, Volume 135, May 2018, Pages 1-15

ترجمه کلمات کلیدی
گروه شمع، اسفنج، آب پاک، مدل، کاربرد،
کلمات کلیدی انگلیسی
Pile group; Scour; Clear water; Model; Application;
پیش نمایش مقاله
پیش نمایش مقاله  یک چارچوب یکپارچه از ماشین های یادگیری شدید برای پیش بینی پاشیدن در گروه های شمع در شرایط آب آشامیدنی

چکیده انگلیسی

In this study, an integrated framework of Extreme Learning Machines (ELM) was developed to predict local scour depth around pile groups in clear water. The effective variables on local scour at pile groups include flow characteristics upstream of the piles, critical flow conditions related to the incipient motion of particles, pile spacing arrangement, geometric properties and bed particle size. The ELM network was trained and tested using dimensional datasets collected from extensive experiments reported in the literature. The ELM network testing results were compared with a support vector machine (SVM) and artificial neural network (ANN). The most effective variable on local scour depth at pile groups was determined using different sets of input combinations. The proposed ELM model produced a lower error in predicting local scour depth at pile groups than other existing models (R2 = 0.99; MAPE = 8.75; RMSE = 0.007). The ELM model results were compared with existing artificial intelligence-based and regression-based models. The results indicate that ELM outperformed the existing methods with a high level of accuracy. Moreover, according to an uncertainty analysis of scour depth prediction by the proposed and existing models, the least uncertainty band width for ELM was ±0.0011 compared to ±0.0014 for the best existing model. Moreover, an ELM-based equation was proposed for use in practical engineering. Furthermore, a sensitivity analysis was done to study the effect of each variable on the ELM-based equation proposed.