دانلود مقاله ISI انگلیسی شماره 159951
ترجمه فارسی عنوان مقاله

تشخیص ناهنجاری زمان واقعی محافظت نشده برای جریان داده ها

عنوان انگلیسی
Unsupervised real-time anomaly detection for streaming data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
159951 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 262, 1 November 2017, Pages 134-147

ترجمه کلمات کلیدی
تشخیص آنومالی، حافظه زمانی سلسله مراتبی، داده های جریان، یادگیری بی نظیر، مفهوم رانش مجموعه داده های معیار،
کلمات کلیدی انگلیسی
Anomaly detection; Hierarchical Temporal Memory; Streaming data; Unsupervised learning; Concept drift; Benchmark dataset;
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص ناهنجاری زمان واقعی محافظت نشده برای جریان داده ها

چکیده انگلیسی

We are seeing an enormous increase in the availability of streaming, time-series data. Largely driven by the rise of connected real-time data sources, this data presents technical challenges and opportunities. One fundamental capability for streaming analytics is to model each stream in an unsupervised fashion and detect unusual, anomalous behaviors in real-time. Early anomaly detection is valuable, yet it can be difficult to execute reliably in practice. Application constraints require systems to process data in real-time, not batches. Streaming data inherently exhibits concept drift, favoring algorithms that learn continuously. Furthermore, the massive number of independent streams in practice requires that anomaly detectors be fully automated. In this paper we propose a novel anomaly detection algorithm that meets these constraints. The technique is based on an online sequence memory algorithm called Hierarchical Temporal Memory (HTM). We also present results using the Numenta Anomaly Benchmark (NAB), a benchmark containing real-world data streams with labeled anomalies. The benchmark, the first of its kind, provides a controlled open-source environment for testing anomaly detection algorithms on streaming data. We present results and analysis for a wide range of algorithms on this benchmark, and discuss future challenges for the emerging field of streaming analytics.