دانلود مقاله ISI انگلیسی شماره 159952
ترجمه فارسی عنوان مقاله

انتخاب متریک و تشخیص ناهنجاری برای عملیات ابر با استفاده از تجزیه و تحلیل همبستگی منطقی و متریک

عنوان انگلیسی
Metric selection and anomaly detection for cloud operations using log and metric correlation analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
159952 2018 23 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Systems and Software, Volume 137, March 2018, Pages 531-549

ترجمه کلمات کلیدی
عملیات ابر عملیات، نظارت بر ابر، انتخاب متریک، تشخیص آنومالی، شناسایی خطا، تجزیه و تحلیل ورود،
کلمات کلیدی انگلیسی
Cloud application operations; Cloud monitoring; Metric selection; Anomaly detection; Error detection; Log analysis;
پیش نمایش مقاله
پیش نمایش مقاله  انتخاب متریک و تشخیص ناهنجاری برای عملیات ابر با استفاده از تجزیه و تحلیل همبستگی منطقی و متریک

چکیده انگلیسی

Cloud computing systems provide the facilities to make application services resilient against failures of individual computing resources. However, resiliency is typically limited by a cloud consumer’s use and operation of cloud resources. In particular, system operations have been reported as one of the leading causes of system-wide outages. This applies specifically to DevOps operations, such as backup, redeployment, upgrade, customized scaling, and migration – which are executed at much higher frequencies now than a decade ago. We address this problem by proposing a novel approach to detect errors in the execution of these kinds of operations, in particular for rolling upgrade operations. Our regression-based approach leverages the correlation between operations’ activity logs and the effect of operation activities on cloud resources. First, we present a metric selection approach based on regression analysis. Second, the output of a regression model of selected metrics is used to derive assertion specifications, which can be used for runtime verification of running operations. We have conducted a set of experiments with different configurations of an upgrade operation on Amazon Web Services, with and without randomly injected faults to demonstrate the utility of our new approach.