دانلود مقاله ISI انگلیسی شماره 160836
ترجمه فارسی عنوان مقاله

بهبود مداخله درد در بیماران مبتلا به بیماری سلول داسی شکل از روش های فیزیولوژیکی با استفاده از تکنیک های یادگیری ماشین

عنوان انگلیسی
Improving pain management in patients with sickle cell disease from physiological measures using machine learning techniques
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
160836 2018 22 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Smart Health, Available online 2 February 2018

ترجمه کلمات کلیدی
سنجش فیزیولوژیکی، پشتیبانی تصمیم فراگیری ماشین، اطلاع رسانی بهداشتی،
کلمات کلیدی انگلیسی
Physiological sensing; Decision support; Machine learning; Health informatics;
پیش نمایش مقاله
پیش نمایش مقاله  بهبود مداخله درد در بیماران مبتلا به بیماری سلول داسی شکل از روش های فیزیولوژیکی با استفاده از تکنیک های یادگیری ماشین

چکیده انگلیسی

Pain management is a crucial part in Sickle Cell Disease treatment. Accurate pain assessment is the first stage in pain management. However, pain is a subjective experience and hard to assess via objective approaches. In this paper, we proposed a system to map objective physiological measures to subjective self-reported pain scores using machine learning techniques. Using Multinomial Logistic Regression and data from 40 patients, we were able to predict patients’ pain scores on an 11-point rating scale with an average accuracy of 0.578 at the intra-individual level, and an accuracy of 0.429 at the inter-individual level. With a condensed 4-point rating scale, the accuracy at the inter-individual level was further improved to 0.681. Overall, we presented a preliminary machine learning model that can predict pain scores in SCD patients with promising results. To our knowledge, such a system has not been proposed earlier within the SCD or pain domains by exploiting machine learning concepts within the clinical framework.