دانلود مقاله ISI انگلیسی شماره 46398
ترجمه فارسی عنوان مقاله

مدلسازی تبخیر روزانه از ظرف در آب و هوای گرمسیری زیرمجموعه با استفاده از شبکه عصبی مصنوعی، منطق فازی LS-SVR و ANFIS

عنوان انگلیسی
Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46398 2014 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 41, Issue 11, 1 September 2014, Pages 5267–5276

ترجمه کلمات کلیدی
تبخیر - مدل سازی - آزمون گاما - ANN - LS-SVR - منطق فازی - ANFIS
کلمات کلیدی انگلیسی
Evaporation; Modeling; Gamma Test; ANN; LS-SVR; Fuzzy Logic; ANFIS
پیش نمایش مقاله
پیش نمایش مقاله  مدلسازی تبخیر روزانه از ظرف در آب و هوای گرمسیری زیرمجموعه با استفاده از شبکه عصبی مصنوعی، منطق فازی LS-SVR و ANFIS

چکیده انگلیسی

This paper investigates the abilities of Artificial Neural Networks (ANN), Least Squares – Support Vector Regression (LS-SVR), Fuzzy Logic, and Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques to improve the accuracy of daily pan evaporation estimation in sub-tropical climates. Meteorological data from the Karso watershed in India (consisting of 3801 daily records from the year 2000 to 2010) were used to develop and test the models for daily pan evaporation estimation. The measured meteorological variables include daily observations of rainfall, minimum and maximum air temperatures, minimum and maximum humidity, and sunshine hours. Prior to model development, the Gamma Test (GT) was used to derive estimates of the noise variance for each input–output set in order to identify the most useful predictors for use in the machine learning approaches used in this study. The ANN models consisted of feed forward backpropagation (FFBP) models with Bayesian Regularization (BR), along with the Levenberg–Marquardt (LM) algorithm. A comparison was made between the estimates provided by the ANN, LS-SVR, Fuzzy Logic, and ANFIS models. The empirical Hargreaves and Samani method (HGS), as well as the Stephens–Stewart (SS) method, were also considered for comparison with the newer machine learning methods. The Root Mean Square Error (RMSE) and Correlation Coefficient (CORR) were the statistical performance indices that were used to evaluate the accuracy of the various models. Based on the comparison, it was found that the Fuzzy Logic and LS-SVR approaches can be employed successfully in modeling the daily evaporation process from the available climatic data. In addition, results showed that the machine learning models outperform the traditional HGS and SS empirical methods.