دانلود مقاله ISI انگلیسی شماره 46439
ترجمه فارسی عنوان مقاله

شبکه عصبی و کاهش مقیاس آماری منطق فازی از الگوی آب و هوایی خاص نوع گردش جوی برای پیش بینی بارش

عنوان انگلیسی
Neural network and fuzzy logic statistical downscaling of atmospheric circulation-type specific weather pattern for rainfall forecasting
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46439 2014 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 22, September 2014, Pages 681–694

ترجمه کلمات کلیدی
فاجعه طبیعی - منطق فازی - شبکه عصبی - ریزمقیاسنمایی آماری - پیش بینی بارش - سری زمانی فضایی
کلمات کلیدی انگلیسی
Natural disaster; Fuzzy logic; Neural network; Statistical downscaling; Rainfall forecasting; Time-spatial series
پیش نمایش مقاله
پیش نمایش مقاله  شبکه عصبی و کاهش مقیاس آماری منطق فازی از الگوی آب و هوایی خاص نوع گردش جوی برای پیش بینی بارش

چکیده انگلیسی

The weather natural disaster prevention for quantitative daily rainfall forecasting derived from the SACZ-ULCV weather pattern is proposed in this paper by using intertwined statistical downscaling (SD) and soft computing (SC) approaches. The fuzzy statistical downscaling (FSD) is first introduced and, then, employed for dealing with the SACZ-ULCV atmospheric circulation-type specific weather pattern for supporting daily precipitation (rainfall) forecasting. This paper also addresses the performance comparison of the FSD and the neural statistical downscaling (NSD) approaches when taking into account 12 major urban centers all over the state of São Paulo, Brazil, for the summer period. The SACZ-ULCV summer pattern is identified in meteorological satellite images when the cloudiness of the Brazilian Northeast upper level cyclonic vortices (ULCV) meets the South Atlantic convergence zone (SACZ). Increasing the convection and the cloudiness over the Southeast region of Brazil, the SACZ-ULCV causes severe rainfalls and thunderstorms with impact on the population. Finding a manner to anticipate these extreme rainfall events is of vital importance for minimizing or avoiding disasters, and saving lives. Daily rainfall forecasting had their performance improved either by using the proposed FSD or NSD in comparison to the Multilinear Regression ETA model. Results demonstrate the FSD and the NSD become feasible alternatives for achieving a correspondence from meteorological and thermo-dynamical variables to the daily rainfall variable.