دانلود مقاله ISI انگلیسی شماره 52377
ترجمه فارسی عنوان مقاله

مدل سازی پیش بینی برای مصرف انرژی در ماشینکاری با استفاده از تکنیک های هوش مصنوعی

عنوان انگلیسی
Predictive Modeling for Power Consumption in Machining Using Artificial Intelligence Techniques ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی ترجمه فارسی
52377 2015 5 صفحه PDF سفارش دهید
دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله تقریباً شامل 2930 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 90 تومان 7 روز بعد از پرداخت 263,700 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 180 تومان 4 روز بعد از پرداخت 527,400 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Procedia CIRP, Volume 26, 2015, Pages 403–407

ترجمه کلمات کلیدی
قدرت؛ مدل سازی پیش بینی: شبکه عصبی مصنوعی - رگرسیون بردار پشتیبان -
کلمات کلیدی انگلیسی
Power; Predicitve Modeling: Artificial Neural Network; Support Vector Regression ;
پیش نمایش مقاله
پیش نمایش مقاله  مدل سازی پیش بینی برای مصرف انرژی در ماشینکاری با استفاده از تکنیک های هوش مصنوعی

چکیده انگلیسی

The objective of this work is to highlight the modeling capabilities of artificial intelligence techniques for predicting the power requirements in machining process. The present scenario demands such types of models so that the acceptability of power prediction models can be raised and can be applied in sustainable process planning. This paper presents two artificial intelligence modeling techniques - artificial neural network and support vector regression - used for predicting the power consumed in machining process. In order to investigate the capability of these techniques for predicting the value of power, a real machining experiment is performed. Experiments are designed using Taguchi method so that effect of all the parameters could be studied with minimum possible number of experiments. A L16 (43) 4-level 3-factor Taguchi design is used to elaborate the plan of experiments. The power predicted by both techniques are compared and evaluated against each other and it has been found that ANN slightly performs better as compare to SVR. To check the goodness of models, some representative hypothesis tests t-test to test the means, f-test and Leven's test to test variance are conducted. Results indicate that the models proposed in the research are suitable for predicting the power.

دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله شامل 2930 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 90 تومان 7 روز بعد از پرداخت 263,700 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 180 تومان 4 روز بعد از پرداخت 527,400 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.