دانلود مقاله ISI انگلیسی شماره 52379
ترجمه فارسی عنوان مقاله

پیش بینی هزینه های توسعه تجهیزات تولید TFT-LCD با مدل های هوش مصنوعی

عنوان انگلیسی
Predicting the development cost of TFT-LCD manufacturing equipment with artificial intelligence models
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52379 2010 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Production Economics, Volume 128, Issue 1, November 2010, Pages 339–350

ترجمه کلمات کلیدی
صنعت TFT-LCD؛ ساخت؛ مدیریت پروژه؛ پیش بینی؛ هوش مصنوعی
کلمات کلیدی انگلیسی
TFT-LCD industry; Manufacturing; Project management; Forecasting; Artificial intelligence
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی هزینه های توسعه تجهیزات تولید TFT-LCD با مدل های هوش مصنوعی

چکیده انگلیسی

Accurately and timely estimating product costs is extremely beneficial to corporate survival. This study assesses the reliability of multiple regression analysis (MRA), artificial neural networks (ANNs), case-based reasoning (CBR), and hybrid intelligence (Hi) to forecast costs of thin-film transistor liquid-crystal display (TFT-LCD) equipment. Newly completed equipment-development projects are provided by departments in a Taiwanese high-tech company, which is a top global producer of TFT-LCD equipment. The cross-fold validation method is applied to measure model performance, reliability, and prediction ease. Through comparison of various performance indices, the Hi method outperforms MRA, ANNs and CBR when used for cost prediction during conceptual stages. Although it is well developed in academia, artificial intelligence (AI) is rarely applied in practical project management. This study successfully describes an actionable knowledge-discovery process using a real-world data mining approach for the high-tech equipment manufacturing industry. Project managers (PMs) can benefit from applying the Hi approach to establish latent non-linear cost estimation relationships. The Hi approach is empirically proven an effective prediction technique for PMs considering overall evaluation criteria when determining the best selling prices of TFT-LCD manufacturing equipment to clients.