دانلود مقاله ISI انگلیسی شماره 52471
ترجمه فارسی عنوان مقاله

تشخیص عیب بر سازه های پرتو مانند پارامترهای معین با استفاده از شبکه های عصبی مصنوعی

عنوان انگلیسی
Fault diagnosis on beam-like structures from modal parameters using artificial neural networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52471 2015 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Measurement, Volume 76, December 2015, Pages 45–61

ترجمه کلمات کلیدی
شبکه های عصبی مصنوعی - شبکه های عصبی کلی - تجزیه و تحلیل معین - تجزیه و تحلیل اجزاء محدود - شناسایی آسیب - پارامترهای معین
کلمات کلیدی انگلیسی
Artificial neural networks (ANNs); Ensemble neural network; Modal analysis; Finite element analysis; Damage identification; Modal parameters
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص عیب بر سازه های پرتو مانند پارامترهای معین با استفاده از شبکه های عصبی مصنوعی

چکیده انگلیسی

Currently, visual inspection is performed in order to evaluate damage in structures. This approach is affected by the constraints of time and the availability of qualified personnel. Thus, new approaches to damage identification that provide faster and more accurate results are pursued. A promising approach to damage evaluation and detection utilizes artificial neural networks (ANNs) in solving these two problems. ANNs are a powerful artificial intelligence (AI) technique that have received wide acceptance in predicting the extent and location of damage in structures. In this study, the fundamental strategy for developing ANNs to predict the severity and location of double-point damage cases from the measured data of the dynamic behavior of the structure in I-beam structures is considered. ANNs are trained using vibration data consisting of natural frequencies and mode shapes obtained from experimental modal analysis and finite element simulations of intact and damaged I-beam structures. By using ANNs, some significant problems of conventional damage identification approaches can be overcome and damage detection accuracy can be improved.