دانلود مقاله ISI انگلیسی شماره 52475
ترجمه فارسی عنوان مقاله

اثرات پارامترهای موتور بر جریان یونیزاسیون و مدل سازی ضریب هوای اضافی توسط شبکه عصبی مصنوعی

عنوان انگلیسی
Effects of engine parameters on ionization current and modeling of excess air coefficient by artificial neural network
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52475 2015 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Thermal Engineering, Volume 90, 5 November 2015, Pages 94–101

ترجمه کلمات کلیدی
جریان یونیزاسیون، موتور احتراق جرقه ضریب هوا بیش از حد، نسبت سوخت هوا، شبکه های عصبی مصنوعی
کلمات کلیدی انگلیسی
Ionization current; Spark ignition engine; Excess air coefficient; Air–fuel ratio; Artificial neural network

چکیده انگلیسی

This study investigates the effects of engine speed, load, ignition timing and excess air coefficient on the ionization current and presents an artificial neural network model to predict the in-cylinder air-fuel ratio by using data of the ionization current. A secondary spark plug was used as an ionization current sensor. Experimental studies were conducted on a spark-ignition engine at variable speed, load, ignition timing, and excess air coefficient. The effects of these parameters on the ionization current were investigated individually. For modeling of the excess air coefficient, an artificial neural network model was developed with the experimental results. The network was trained with Levenberg-Marquardt and Scaled Conjugate Gradient training algorithms. Performance of the network was measured by comparing the predictions with the remaining experimental results. The excess air coefficient can be predicted with the network with a coefficient of determination of 0.99508. This study shows, the ionization current signal can be used to predict the in-cylinder excess air coefficient as a feasible alternative to the production air-fuel ratio sensors.