دانلود مقاله ISI انگلیسی شماره 52487
ترجمه فارسی عنوان مقاله

استفاده از شبکه عصبی مصنوعی کنترل کننده پیش بینی شده برای ردیابی فشار در شبکه توزیع گاز بهینه سازی شده با الگوریتم فاخته

عنوان انگلیسی
Using artificial neural network predictive controller optimized with Cuckoo Algorithm for pressure tracking in gas distribution network
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52487 2015 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Natural Gas Science and Engineering, Volume 27, Part 3, November 2015, Pages 1446–1454

ترجمه کلمات کلیدی
شبکه توزیع گاز - کنترل کننده مدل پیش بینی - شبکه عصبی مصنوعی - الگوریتم بهینه سازی فاخته - کنترل انتگرال متناسب مشتق
کلمات کلیدی انگلیسی
Gas distribution network; Model predictive controller; Artificial neural network; Cuckoo optimization algorithm; Proportional-integral-derivative controller
پیش نمایش مقاله
پیش نمایش مقاله  استفاده از شبکه عصبی مصنوعی کنترل کننده پیش بینی شده برای ردیابی فشار در شبکه توزیع گاز بهینه سازی شده با الگوریتم فاخته

چکیده انگلیسی

In order to model and analyze gas networks, several methods have already been developed and presented. Nevertheless, all these methods have their own specific applications and most of them are very complex and usually contain some errors. In this paper, in an attempt to resolve these problems, an Artificial Neural Network (ANN) has been used to model a gas distribution network. The algorithms utilized for ANN training, such as the gradient descent algorithm, are usually subjected to local minima; in this regard, the new Cuckoo Optimization Algorithm (COA) is used in training the weights of the neural network. However, gas networks are often very large and operate a multitude of distant points, which explains why time delays in these networks are inevitable. Accordingly, in order for all points of the output (pressure) to achieve the desired value, a Model Predictive Controller was used. According to the results achieved, it can be said that the Artificial Neural Network Cuckoo Optimization Algorithm (ANN_COA), in comparison to regular ANN, yields a more suitable performance and is less prone to error. In addition, the MPC controller is faster and suffers from fewer errors compared to the Proportional-Integral-Derivative (PID) controller while also preventing fluctuations in gas system input.