دانلود مقاله ISI انگلیسی شماره 52494
ترجمه فارسی عنوان مقاله

روش پیش بینی سرعت باد جدید با استفاده از تجزیه مدل تجربی سریع ، الگوریتم ژنتیک، شبکه عصبی تکاملی الگوریتم ذهن و مصنوعی

عنوان انگلیسی
New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52494 2015 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Renewable Energy, Volume 83, November 2015, Pages 1066–1075

ترجمه کلمات کلیدی
انرژی باد - پیش بینی سرعت باد - تجزیه - الگوریتم تکاملی ذهن - الگوریتم ژنتیک - شبکه های عصبی مصنوعی
کلمات کلیدی انگلیسی
Wind energy; Wind speed forecasting; Decomposition; Mind Evolutionary Algorithm; Genetic algorithm; Artificial Neural Networks
پیش نمایش مقاله
پیش نمایش مقاله  روش پیش بینی سرعت باد جدید با استفاده از تجزیه مدل تجربی سریع ، الگوریتم ژنتیک، شبکه عصبی تکاملی الگوریتم ذهن و مصنوعی

چکیده انگلیسی

Wind speed high-precision prediction is one of the most important technical aspects to protect the safety of wind power utilization. In this study, two new hybrid methods [FEEMD-MEA-MLP/FEEMD-GA-MLP] are proposed for the wind speed accurate multi-step predictions by combining FEEMD (Fast Ensemble Empirical Mode Decomposition), MEA (Mind Evolutionary Algorithm), GA (Genetic Algorithm) and MLP (Multi Layer Perceptron) neural networks. In these two hybrid methods, the FEEMD algorithm is adopted to decompose the original wind speed series into a number of sub-layers and the MLP neural networks optimized by the MEA algorithm and the GA algorithm are built to predict the decomposed wind speed sub-layers, respectively. The innovation of the study is to investigate the promoted percentages of the MLP neural networks by the FEEMD decomposition and the MEA/GA optimization, respectively. The involved forecasting models in the performance comparison in the study include the hybrid FEEMD-MEA-MLP, the hybrid FEEMD -GA-MLP, the hybrid FEEMD-MLP, the hybrid MEA-MLP, the hybrid GA-MLP and the single MLP. Two experimental results show that: (a) among all the involved methods, the hybrid FEEMD-MEA-MLP model has the best forecasting performance; (b) the FEEMD algorithm promotes the performance of the MLP neural networks significantly while the MEA/GA algorithms do not improve the performance of the MLP neural networks significantly; and (c) the hybrid FEEMD-MEA-MLP method and the hybrid FEEMD-GA-MLP method are both effective in the wind speed high-precision predictions.