دانلود مقاله ISI انگلیسی شماره 52499
ترجمه فارسی عنوان مقاله

شبکه های عصبی مصنوعی در مقابل برنامه نویسی بیان ژن برای برآورد تبخیر و تعرق مرجع در آب و هوای خشک

عنوان انگلیسی
Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52499 2016 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Agricultural Water Management, Volume 163, 1 January 2016, Pages 110–124

ترجمه کلمات کلیدی
مرجع تبخیر و تعرق - هوش مصنوعی - محیط های خشک
کلمات کلیدی انگلیسی
Reference evapotranspiration; Penman–Monteith; Artificial intelligence; Arid environments
پیش نمایش مقاله
پیش نمایش مقاله  شبکه های عصبی مصنوعی در مقابل برنامه نویسی بیان ژن برای برآورد تبخیر و تعرق مرجع در آب و هوای خشک

چکیده انگلیسی

Artificial neural networks (ANNs) and gene expression programming (GEP) were compared to estimate daily reference evapotranspiration (ETref) under arid conditions. The daily climatic variables were collected by 13 meteorological stations from 1980 to 2010. The ANN and GEP models were trained on 65% of the climatic data and tested using the remaining 35%. The generalised Penman–Monteith (PMG) model was used as a reference target for evapotranspiration values, with hc varies from 5 to 105 cm with increment of a centimetre. The developed models were spatially validated using climatic data from 1980 to 2010 taken from another six meteorological stations. The results showed that the eight ETref models developed using the ANN technique were slightly more accurate than those developed using the GEP technique. The ANN models’ determination coefficients (R2) ranged from 67.6% to 99.8% and root mean square error (RMSE) values ranged from 0.20 to 2.95 mm d-1. The GEP models’ R2 values ranged from 64.4% to 95.5% and RMSE values ranged from 1.13 to 3.1 mm d-1. Although the GEP models performed slightly worse than the ANN models, the GEP models used explicit equations.