دانلود مقاله ISI انگلیسی شماره 52505
ترجمه فارسی عنوان مقاله

روش شبکه عصبی مصنوعی وابسته به رژیم برای پیش بینی کوتاه برد تابش خورشیدی

عنوان انگلیسی
A regime-dependent artificial neural network technique for short-range solar irradiance forecasting
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52505 2016 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Renewable Energy, Volume 89, April 2016, Pages 351–359

ترجمه کلمات کلیدی
تابش خورشید - شبکه عصبی مصنوعی - رژیم وابسته به پیش بینی - تنوع تابش
کلمات کلیدی انگلیسی
Solar irradiance; Artificial neural network; Regime-dependent prediction; m-Means clustering; Irradiance variability
پیش نمایش مقاله
پیش نمایش مقاله  روش شبکه عصبی مصنوعی وابسته به رژیم برای پیش بینی کوتاه برد تابش خورشیدی

چکیده انگلیسی

Solar power can provide substantial power supply to the grid; however, it is also a highly variable energy source due to changes in weather conditions, i.e. clouds, that can cause rapid changes in solar power output. Independent systems operators (ISOs) and regional transmission organizations (RTOs) monitor the demand load and direct power generation from utilities, define operating limits and create contingency plans to balance the load with the available power generation resources. ISOs, RTOs, and utilities will require solar irradiance forecasts to effectively and efficiently balance the energy grid as the penetration of solar power increases. This study presents a cloud regime-dependent short-range solar irradiance forecasting system to provide 15-min average clearness index forecasts for 15-min, 60-min, 120-min and 180-min lead-times. A k-means algorithm identifies the cloud regime based on surface weather observations and irradiance observations. Then, Artificial Neural Networks (ANNs) are trained to predict the clearness index. This regime-dependent system makes a more accurate deterministic forecast than a global ANN or clearness index persistence and produces more accurate predictions of expected irradiance variability than assuming climatological average variability.