دانلود مقاله ISI انگلیسی شماره 52521
ترجمه فارسی عنوان مقاله

شناسایی سیستم بهبود یافته با استفاده از شبکه های عصبی مصنوعی و تجزیه و تحلیل تفاوت های فردی در واکنش یک نورون شناخته شده

عنوان انگلیسی
Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52521 2016 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neural Networks, Volume 75, March 2016, Pages 56–65

ترجمه کلمات کلیدی
شبکه عصبی مصنوعی - الگوریتم فوق ابتکاری - حس عمقی - ملخ - نورون حرکتی - تفاوتهای فردی
کلمات کلیدی انگلیسی
Artificial neural network; Metaheuristic algorithm; Proprioception; Grasshopper; Motor neuron; Individual differences
پیش نمایش مقاله
پیش نمایش مقاله  شناسایی سیستم بهبود یافته با استفاده از شبکه های عصبی مصنوعی و تجزیه و تحلیل تفاوت های فردی در واکنش یک نورون شناخته شده

چکیده انگلیسی

Mathematical modelling is used routinely to understand the coding properties and dynamics of responses of neurons and neural networks. Here we analyse the effectiveness of Artificial Neural Networks (ANNs) as a modelling tool for motor neuron responses. We used ANNs to model the synaptic responses of an identified motor neuron, the fast extensor motor neuron, of the desert locust in response to displacement of a sensory organ, the femoral chordotonal organ, which monitors movements of the tibia relative to the femur of the leg. The aim of the study was threefold: first to determine the potential value of ANNs as tools to model and investigate neural networks, second to understand the generalisation properties of ANNs across individuals and to different input signals and third, to understand individual differences in responses of an identified neuron. A metaheuristic algorithm was developed to design the ANN architectures. The performance of the models generated by the ANNs was compared with those generated through previous mathematical models of the same neuron. The results suggest that ANNs are significantly better than LNL and Wiener models in predicting specific neural responses to Gaussian White Noise, but not significantly different when tested with sinusoidal inputs. They are also able to predict responses of the same neuron in different individuals irrespective of which animal was used to develop the model, although notable differences between some individuals were evident.