دانلود مقاله ISI انگلیسی شماره 52526
ترجمه فارسی عنوان مقاله

مقایسه قابلیت شبکه عصبی مصنوعی (ANN) و برنامه CSM برای پیش بینی فشار تشکیل هیدرات در مخلوط های دوتایی

عنوان انگلیسی
Comparing the capability of artificial neural network (ANN) and CSMHYD program for predicting of hydrate formation pressure in binary mixtures
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52526 2015 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Petroleum Science and Engineering, Volume 136, December 2015, Pages 78–87

ترجمه کلمات کلیدی
فشار تشکیل هیدرات - مخلوط های دوتایی - شبکه های عصبی مصنوعی
کلمات کلیدی انگلیسی
Hydrate formation pressure; Binary mixtures; Artificial neural network; CSMHYD program
پیش نمایش مقاله
پیش نمایش مقاله  مقایسه قابلیت شبکه عصبی مصنوعی (ANN) و برنامه CSM برای پیش بینی فشار تشکیل هیدرات در مخلوط های دوتایی

چکیده انگلیسی

In the present study, we investigated forecasting of hydrate formation pressure of binary mixtures including at least one hydrocarbon using a feed-forward multi-layer artificial neural network. For this purpose, 895 experimental data which cover a wide range of temperatures and compositions were collected from different studies cited in the literatures. In order to find the best model, different ANN types are tested through the absolute average relative deviation percent (AARD), mean square error (MSE) and the regression coefficient (R2) and the optimal configuration is selected. It is found that the selected ANN model is based on the statistical analysis has an excellent agreement (AARD=1.02, MSE=1.27×10−5 and R2=0.9938) with the collected experimental data. The obtained results reveal that the developed MLPNN model is an applicable and feasible tool to predict hydrate formation pressure with high accuracy with respect to Colorado School of Mines Hydrate (CSMHYD) Program.