دانلود مقاله ISI انگلیسی شماره 52538
ترجمه فارسی عنوان مقاله

ارزیابی های مدل الگوریتم ژنتیک محور شبکه های مصنوعی عصبی برای پیش بینی قدرت ارائه شده توسط تراکتورهای کشاورزی

عنوان انگلیسی
Appraisal of artificial neural network-genetic algorithm based model for prediction of the power provided by the agricultural tractors
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52538 2015 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy, Volume 93, Part 2, 15 December 2015, Pages 1704–1710

ترجمه کلمات کلیدی
هوش مصنوعی - قدرت - بن خاک - تراکتور - وسایل نقلیه خارج از جاده
کلمات کلیدی انگلیسی
Artificial intelligence; Power; Soil bin; Tractor; Off-road vehicles
پیش نمایش مقاله
پیش نمایش مقاله  ارزیابی های مدل الگوریتم ژنتیک محور شبکه های مصنوعی عصبی برای پیش بینی قدرت ارائه شده توسط تراکتورهای کشاورزی

چکیده انگلیسی

The knowledge of the available power provided by the driving wheel of agricultural tractors is required to gain a correct insight into the energy management of agricultural tractors. The design of the tractors is pivotal on the maximization of the traction efficiency and simultaneous minimization of energy dissipation. This paper spearheads the synthesis of the power provided by the agricultural tractors as affected by wheel load, slip and speed by use of the potential of a soil bin facility and a single-wheel test rig. The hybridized artificial neural network-genetic algorithm method was adopted to model the provided power of the driving wheel under the effect of the aforementioned tire parameters. The common drawback of the back-propagation algorithm known as the low speed of convergence and the possibility of being trapped in a local minimum was solved by the use of genetic algorithm. The mean square error equal to 0.02242 was obtained as the most optimal artificial neural network-genetic algorithm configuration using Levenberg–Marquardt training algorithm. Therefore, a 3-9-1 feed-forward with back propagation learning algorithm was selected as the modeling structure. The computed coefficient of determination for the training and test phases of the best artificial neural network-genetic algorithm model was obtained at 0.9696 and 0.9672, respectively. The present study spearheads the required power estimation for the driving wheels of off-road vehicles while the experimental test conduction in a controlled soil bin facility using single-wheel tester and adoption of soft computing tools are of the highlights and added values of the paper.