دانلود مقاله ISI انگلیسی شماره 53810
ترجمه فارسی عنوان مقاله

محدود کردن محدودیت فعال برق مبتنی بر شبکه عصبی برای پیشگیری از بروز ولتاژ در فیدرهای ولتاژ پایین

عنوان انگلیسی
Neural network-based active power curtailment for overvoltage prevention in low voltage feeders
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
53810 2014 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 41, Issue 4, Part 1, March 2014, Pages 1063–1070

ترجمه کلمات کلیدی
بیش از حد، افزایش ولتاژ، مدل سازی پیش بینی کننده محدود کردن قدرت فعال، شبکه های عصبی مصنوعی
کلمات کلیدی انگلیسی
Overvoltage; Voltage-rise; Predictive modeling; Active power curtailment; Artificial neural networks

چکیده انگلیسی

As non-controllable and intermittent power sources, grid-connected photovoltaic (PV) systems can contribute to overvoltage in low voltage (LV) distribution feeders during periods of high solar generation and low load where there exists a possibility of reverse power flow. Overvoltage is usually prevented by conservatively limiting the penetration level of PV, even if these critical periods rarely occur. This is the current policy implemented in the Northern Territory, Australia, where a modest system limit of 4.5 kW/house was imposed. This paper presents an active power curtailment (APC) strategy utilizing artificial neural networks techniques. The inverter active power is optimized to prevent any overvoltage conditions on the LV feeder. A residential street located in Alice Springs was identified as a case study for this paper. Simulation results demonstrated that overvoltage conditions can be eliminated and made to comply with the Australian Standards AS60038 and AS4777 by incorporating the proposed predictive APC control. In addition, the inverter downtime due to overvoltage trips was eliminated to further reduce the total power losses in the system.