دانلود مقاله ISI انگلیسی شماره 55858
ترجمه فارسی عنوان مقاله

عوامل موثر بر هزینه های سیستم های فتوولتائیک: یک ارزیابی با استفاده از مدل منحنی یادگیری سلسله مراتبی

عنوان انگلیسی
The determinants of photovoltaic system costs: an evaluation using a hierarchical learning curve model
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
55858 2016 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Cleaner Production, Volume 112, Part 2, 20 January 2016, Pages 1709–1716

ترجمه کلمات کلیدی
تولید برق فتوولتائیک؛ منحنی یادگیری سلسله مراتبی؛ انرژی تجدیدپذیر
کلمات کلیدی انگلیسی
Photovoltaic electricity generation; Hierarchical learning curve; Renewable energy
پیش نمایش مقاله
پیش نمایش مقاله  عوامل موثر بر هزینه های سیستم های فتوولتائیک: یک ارزیابی با استفاده از مدل منحنی یادگیری سلسله مراتبی

چکیده انگلیسی

The uptake of solar power globally as an important alternative energy source to fossil fuels, together with a rapid fall in the cost of photovoltaic (PV) systems, has been phenomenal during the past decade. This trend is widely anticipated to continue for the years to come. The decline in PV installation costs, like many other new technologies through history, has been largely driven by the learning curve effect. However, it is suggested that other factors, such as costs of key production inputs and prices of competing technologies, also impact the costs of PV systems. In this study, we construct a hierarchical learning curve model to quantify the effects that various factors have on installation costs of PV systems based on empirical data from Taiwan. The results show that, in addition to the learning curve effect as underpinned by an increase of cumulative PV capacity, reductions to silicon price have significantly contributed to the decline of the final installation costs of PV systems in Taiwan. By quantifying the effects of critical cost factors, the learning curve effects on PV installation costs in Taiwan are defined which enable a more accurate projection of PV installation costs for governments, PV producers, operators and users.